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A method for examining the convergence of expansions of wave functions for nearly free electrons is pre
sented. I t is shown that Bardeen-type expansions of alkali-metal conduction-electron wave functions con
verge sufficiently slowly so that it is necessary, when calculating the value of a physical quantity to any given 
power of k, to include all terms of all orders in u (k, r) which contribute to that power. Consequently, wave-
function expansions to third order in k which include the effects of spin-orbit interaction to first order are de
rived, in the spherical approximation, for these metals. Using these wave functions in Yafet's equation, the 
g shift, to second order in | k |, is expressed in terms of radial wave functions. The radial functions are evaluated 
numerically using the quantum defect nethod under four different approximations: (i) With and without the 
so-called "polarization correction" and (ii) with and without a term in the potential corresponding to an app
roximate self-consistent Hartree field due to the presence of other conduction electrons within the Wigner-
Seitz sphere. The best agreement with experiment is obtained when the "polarization correction" is neglected 
and the Hartree term included. In this approximation the effective mass ratio, m/m* is considerably closer 
to unity in the heavier alkali metals than was predicted by earlier calculations. The "polarization correction" 
is examined in detail in an unsuccessful effort to determine why it leads to a considerable decrease in the 
agreement with experiment. 

firmed by other calculations10 that these results are 
due to the approximations used in earlier versions of the 
QDM of replacing the true crystal potential by that 
of the bare ion cores, neglecting screening by the charge 
of the valence electrons. Direct measurements11 of the 
effective mass at the Fermi surface yield values which 
are about 30% high in comparison with the present cal
culations. The interpretation of this discrepancy is com
plicated by many-body and phonon interactions which 
still cannot be predicted accurately from first principles. 

The shift of the alkali metal conduction electron g 
from the free-electron value depends directly on spin-
orbit interaction. For this reason, the calculation de
pends primarily on the quality of the l>0 terms in the 
expansion of the wave function. The 1=0 terms in
fluence the calculation primarily through normalization. 

Three other numerical calculations of the g shift are 
reported in the literature. Two, by Brooks12 and by 
Yafet,12 were based on an incomplete theory of Yafet12 

and yielded values which were approximately one-half 
the observed values. The third, by Bienenstock and 
Brooks,13 used the more complete theory of Yafet,14 but 
a wave function which had been expanded to only 
second order in the Bloch vector. The shifts obtained 
were consistently and significantly larger in magnitude 
than the observed values. 

In the work reported here, it is shown that it is 
possible to obtain improved agreement with experi
ment. Such agreement, however, depends sensitively 
on the choice of approximations made in deriving the 
wave functions. In particular, it was necessary to (i) use 
the expansion of the wave function to third order in the 

10 V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964). 
11 C. C. Grimes and A. F. Kip, Phys. Rev. 132, 1991 (1963). 
12 H. Brooks, Phys. Rev. 94, 1411(A) (1954); Y. Yafet, ibid. 

85, 478 (1952). 
13 A. Bienenstock and H. Brooks, Bull. Am. Phys. Soc. 5, 253 

(1960). 
14 Y. Yafet, Phys. Rev. 106, 679 (1957). 
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I. INTRODUCTION 

TH E quantum defect method (QDM)1"3 has been 
used, with considerable success, to develop wave 

functions for the alkali-metal conduction electrons near 
the surface of the Wigner-Seitz polyhedron or sphere. 
The wave functions have been used to calculate a 
number of measurable properties of the metals. In most 
cases the agreement with experiment has been quite 
satisfactory, within the somewhat wide limits of un
certainty in the theory. These properties are the cohesive 
energy,4,5 the compressibility,4'5 and the Knight shift6 

as a function of temperature. A common characteristic 
of the properties is that they depend mainly on the "s" 
portion of the wave functions. In addition, calculations 
of the effective mass5,7 and the shape of the Fermi 
surface8 have been made. Both quantities depend on 
higher-order terms in the spherical harmonic expansion 
of the wave function and are a partial check on these 
terms. Measurements9 which depend on the shape of 
the Fermi surface indicate that the calculations have 
overestimated the distortion from sphericity of this 
surface. I t is suggested in the present work and con-

* Portions of this work were submitted by one of us (AB) in 
partial fulfillment of the requirements for the Ph.D., Harvard 
University, 1962. The work was supported by National Science 
Pre- and Post-Doctoral Fellowships, the U. S. Office of Naval 
Research and the Advanced Research Projects Agency. 

1 H . Brooks, Nuovo Cimento Suppl. 7, 165 (1958). 
2 T. S. Kuhn and J. H. Van Vleck, Phys. Rev. 79, 382 (1950), 

and F. S. Ham, Solid State Phys. 1, 27 (1955). 
3 H. Brooks and F. S. Ham, Phys. Rev. 112, 344 (1958). 
4 H . Brooks, Phys. Rev. 91, 1027 (1953). 
5 H. Brooks, Trans. Am. Inst. Mining, Met. Petrol. Engrs. 227, 

546 (1963). 
6 H . Brooks (unpublished work). See G. Benedek and T. 

Kushida, Phys. Chem.^ Solids 5, 241 (1958). 
7 H . Brooks (unpublished work). 
8 F. S. Ham, Phys. Rev. 128, 82, 2524 (1962). 
9 K. Okumura and I. M. Templeton, Phil. Mag. 7, 1239 (1962); 

8, 889 (1963); and D. Schoenberg and P. J. Stiles (unpublished 
work). 
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wave vector; (ii) include, in the potential, a Hartree 
term, due to the presence of the other conduction elec
trons in the Wigner-Seitz cell; and (iii) neglect the 
"so-called polarization correction."3 Since (i) was not 
in keeping with earlier analyses of the convergence 
properties of the Bardeen expansion, these properties 
have been re-examined. In addition, some of the pa
rameters which enter into the expansion of the energy 
in powers of the magnitude of the Bloch vector, around 
the bottom of the band, have been recalculated. I t is 
found that, in all cases, the deviation from free-electron 
values is smaller than those values previously obtained 
using the bare ion core potential rather than an ap
proximately self-consistent one. 

II. CONVERGENCE OF THE WAVE FUNCTIONS 

The formulation of Yafet14 for the g shift yields an 
expression which is valid to second order in the wave 
vector. This expression requires a knowledge of the 
expansion of the wave functions to third order. In the 
initial calculation of Bienenstock and Brooks,13 it was 
assumed that the expansion of the periodic part, w(k,r), 
of the wave functions is rapidly convergent, so that the 
third-order terms could be neglected. We have since 
found that this is not the case. In this section, the rate 
of convergence is discussed in terms of the k-p expan
sion. For simplicity, spin-orbit interaction is at first 
neglected. 

We are concerned with finding alkali-metal conduc
tion-band solutions of the Schrodinger equation 

— * ( r ) + fv(r,t')f(r')dr' = Et(r'), (2.1) 
2m J 

where F(r,r ') is a nonlocal potential which includes the 
effects of exchange and, to some extent, valence-core 
correlation. Using the Bardeen method, the periodic 
part of the wave function at a point k may be expanded 
in terms of the complete set of functions associated 
with the points & = 0. The analyses of convergence pre
sented previously have been based on the assumption 
that the effective one-electron potential is weak and 
local. We now proceed to show that even in this case 
the convergence of the k«p expansion is slow when \k\ 
is not a small parameter forcing convergence. 

With V(r,rf) = V(r)8(r—r') the Bardeen expansion 
is, to second order, 

|7>«|k.v |0> 
*o(k,r) = 10)+2i E ' 

1 (Eo-Ei) 

r \l)(l\k-v\n)(n\k.v\0) 

1 \ n (Eo-EMEo-En) 

|/)</|k.v|o)(o|k.v|o) 
{E,~Ely 

1 |0><0|k.vU></|k.v|0>l 

Here \l> denotes ui(0,t) with 1=0 indicating the con
duction band. 

For metals in which the electrons are nearly free 
there are three types of matrix elements which enter 
into Eq. (2.2). The simplest are those which are zero 
from symmetry considerations. These may be found 
using group theory. The second class of matrix elements 
are those which are not zero from symmetry considera
tions, but are zero for free electrons. These will be con
sidered as small parameters. The third class includes 
all other matrix elements. For the purpose of discussing 
convergence of wave functions, we shall consider the 
deviations of these matrix elements from their free-
electron values as small parameters compared to the 
matrix elements themselves. Thus, to determine their 
values we may use as basis functions at k = 0 the 
eigenfunctions of the irreducible representations of the 
symmetry group of the crystal constructed from plane 
waves whose wave vectors are the reciprocal lattice 
vectors—the so-called "symmetrized combinations of 
plane waves" (SCPW). 

The second class of matrix elements contains then 
those which are nonzero by symmetry considerations, 
but involve bands constructed from different sets of 
degenerate reciprocal lattice points, while the third 
class contains those taken between different states con
structed from the same set of degenerate reciprocal 
lattice points. 

In the alkali metals the bottom of the conduction 
band corresponds to the reciprocal lattice point K = 0 . 
This point is nondegenerate (ignoring spin degeneracy) 
and the wave functions have the symmetry IY I t is 
easily shown that the k«p perturbation mixes only 
Ti and Fi5. The first set of reciprocal lattice points 
(using the body-centered rather than the primitive 
cell to define the reciprocal lattice indices) are of the 
form (110) and there is a twelvefold degeneracy. From 
the plane waves of the form expice(x+y), where a = lir/a, 
and a is the lattice constant, we can construct SCPW 
which transform according to the irreducible represen
tations Ti, riB, ri2, r25, and I V . ' T h e term of first 
order in k mixes in the three eigenfunctions of I V 
which we denote as \x>, \y>, and \z>. The matrix 
elements are 

<*|k.p|0> <y|k.p|0> <z|k.p|0> 
•=pa, (2.3) 

where /3 is a small parameter, as it is zero for free 
electrons. Thus we find, as has been demonstrated by a 
number of authors, that the terms of order higher than 
zero in Uo(k,r) are very small compared to ^0(0,r), at 
least outside the atomic cores. This is*a necessary con
sequence of the free-electron nature,^as, for free elec
trons, ^(k,r) = ^(0,r) = l . 

The analysis becomes more interesting when we con
sider terms of higher order. k*p mixes Fis with Ti, Fi2, 
Tu, and r25 ; . Of these, the representations of Fi, ri2, 
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and Y^r are contained in the (110) combinations and 
may lead to appreciable matrix elements. Those matrix 
elements of the second class, involving points other than 
(110) may be neglected as they lead to terms which are 
of second order in small parameters. To determine the 
significant matrix elements we need an explicit form 
for the basis functions. Examples are shown below. 
They are constructed in the manner discussed by 
Jones15 and normalized so that their quadratic integral 
over the full cubic unit cell is unity. 

11)= (2/3#3)1/2(cosax cosay+cosay cosaz 

-\-cosaz cosax) 
Tl5 

\x)= (2/a3)1/2 smax(cosay-{-cosaz) 
r1 2 (2.4) 

|-4)= (2/a3)1/2[cosa&(cosa#+cosa;y) 

— 2 cosax coscty] 

\B)~ (2/a?)lf2 cosaz(cosax~cosay) 

I V 

\xy) = (4/a3)1/2 sinax sinary, 

Using these functions in Eq. (2.2) we find that, to 
second order in k and first order in small parameters, 

«o(k,r) = 10)-ip/a(kx\x)+ky | y)+kz \ z)) 

-^{2k2-k2-ky
2)\A)/^a2 

-P(kx
2-ky2)\B)/±a2 

+/3(kxky | xy)+kykm I yz)+kzkx\zx))/-\lla2 

-/?(2)1/2&2| l ) /12a 2+terms from 

other reciprocal lattice sets. (2.5) 

Equation (2.5) reveals the most important lesson to 
be gained from this analysis. That is, in all orders of 
perturbation it is possible to construct terms which 
are linear in the small parameter 13. Thus, there is no 
reason to expect uo(k,r) to converge as quickly, in 
general, as the ratio of the first- to zero-order terms. 
Indeed, the contribution from this set of reciprocal 
lattice points indicates that the convergence factors 
are of the order of i(k/a), which is equal to 0.31 at the 
Fermi surface (spherical approximation). 

This method of analysis has been chosen because the 
free electron functions show the symmetry of the actual 
wave functions. I t is predicated, however, on the as
sumption that all sets in reciprocal space contribute 
terms to the expansion which converge at approxi
mately the same rate. This is not the case. In order to 
examine the contribution of all sets it has been found 
necessary to consider functions which do not display 
the symmetry. 

The easiest manner of determining the contribution 

of all reciprocal lattice points to the convergence is to 
obtain first-order weak-binding solutions to the Schro-
dinger equation and expand these as a power series in 
the wave vector. The solutions under consideration are 
for the wave function outside the core, which are con
sidered equivalent to the orthogonalized wave func
tions in a weak, nonlocal pseudopotential.16 

Following Mott and Jones,17 we write 

^(k,r) = I K f t i ( K J e x p [ i ( k - K n ) . r ] . (2.6) 

The nonlocal pseudopotential can be expressed as 

F ( r / ) = EK„ / V ( K » - K , K ) exp( - ;K w - r ) 

X e x p [ - m - ( r ' - r ) ] JK (2.7) 

since F ( r + R , r ' + R ) = F(r,r ') when R is a repeat vector 
of the lattice. 

In keeping with the previous analysis, the V(Kn— K,K) 
are assumed to be sufficiently small so that terms which 
are quadratic or higher in them may be neglected. 

Substitution of Eq. (2.6) and (2.7) into (2.1) yields 

£ K n A (Kn)£(h2k2/2m) (k-K,)2-Z<f] 

Xexp[f(k—K n ) - r ]+ / T,Kn,Kn' 

X f{V(Kn-K, K)i4(KnO e x p [ ; ( k - K n ' - K ) - r ' ] 

Xexpp (K-K n ) - r ] }dKJ r '=0 . (2.8) 

The integrals over r' and K can be performed, yielding 

£ K n A ( K n ) [ ( f t V 2 w ) ( k - K „ ) 2 - £ ] e x p p ( k - K „ ) . r ] 
+ZKn,Kn>V(Kn-Kn'-k,k)A(Kn') 

X e x p p ( k - K n - K „ / ) - r ] = 0 . 

Since all the V(Kn) are considered small, those terms 
involving A(Kn'), in which K n V 0 , may be neglected. 
In addition, to first order in the 7(K n ) , E= (h2k2/2m). 
Thus, 

L^(K„)[(k-Kw)2-k2] 
+ ( 2 m A 2 ) ^ ( 0 ) F ( K . - k , k ) } e x p ( i K r t . r ) - 0 

or 
/ - 2 f » \ F ( K „ - k , k ) 

A (K„) = ( . (2.9) 
\ h2 /Kr2 ' ~ 

To first order in the potential 

r 2m F ( K n - k , k ) 
^(k,r) = ^ k - r ^(0) 1 E 

L h2 Kn. *0 Kn
2-k'Kn 

Xexp(*K„-r) . (2.10) 

15 H. Jones, The Theory of Brillouin Zones and Electronic States 
in Crystals (North-Holland Publishing Company, Amsterdam, 
1960), Sec. 30, 

16 J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959). 
17 N. F. Mott and H. Jones, The Theory of the Properties of 

Metals and Alloys (Dover Publications, Inc., New York, 1958). 

file://-/-cosaz
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To obtain correspondence with the k«p expansion 
each term in the sum is expanded as a power series in 
k to yield 

( 2m 1 
HKr) = e^A(0) 1 E E I -

XC(k-V k O^F(K n -k ' ,kO>-o 

1 / k - K n y ] 
X exp(fK„.r)}. (2.11) 

KnA K2 J J 

This expression, unfortunately, does not lend itself 
to a simple qualitative analysis. Some idea of the con
vergence properties may be obtained by considering 
the local potential F(r)5(r—r'). In this case V(Kn—k, k) 
= F(KW) for all k. All the gradients with respect to k' 
vanish in (2.11) yielding 

r 2m 
*(k,r) = «*•';! (0) 1 E £ V(Kn) 

L ffi V Kn^O 

/k-K„y exp(iKnT)n 
X \ K 7 / K̂  J' 

The contributions of the nth reciprocal lattice point 
to the ^th-order term goes as (1/Kn

2)(k-En/En2)*. 
This factor produces a convergence which is increasingly 
rapid with increasing | Kw |. Thus, the argument based 
on the (110) set of reciprocal lattice points under
estimates the rate of convergence if points of large | Ew | 
contribute an appreciable portion of the first-order 
term. Since the number of points with fixed | Kn| goes as 
| Kn |

2, the contribution to the first-order term of regions 
of K space with fixed | Ew | goes asF(Kn) (k- Kn)/ | Kn |

2. 
Thus, if the potential is restricted to a small portion of 
the unit cell near the nucleus, so that V(K) is a slowly 
varying function of | Ew |, the convergence will be con
siderably more rapid than that indicated by the (110) 
analysis, but will probably be less rapid than that in
dicated by the ratio of first- to zero-order terms. On 
the other hand, if the potential is slowly varying, so 
that terms with large |E n | make little contribution 
to the first order term, the (110) analysis is more 
nearly correct. * 

No calculations of pseudopotentials have been made 
for the alkali metals. Some idea of the form of the 
V(Kn) for local pseudopotentials can, however, be 
obtained from the work of Phillips and Kleinman18 on 
silicon. In this case, the repulsive terms associated with 
orthogonalization effectively cancel all but the first 
shell components of the potential. Thus, the k»p ex
pansions of the alkali-metal wave functions outside the 
core probably converge as slowly as is indicated in the 
(110) analysis. It thus becomes necessary, when cal
culating the value of a physical quantity to any given 

18 L. Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960). 

power of k, to include all terms of w(k,r) which con
tribute to that power. This is the reason why the wave 
function is carried to third order in the following sec
tion. A complete analysis of the convergence is not 
possible as the nonlocal nature of the potential has 
not been investigated in sufficient detail to allow a 
complete analysis of Eq. (2.11). Finally, it should be 
pointed out that this argument does not necessarily 
apply to the convergence of a calculation of any 
physical quantity in a power series in k. Each such 
quantity must be examined individually. This model 
may often be used, however. 

We may now ask how the spin-orbit terms will 
converge. When we include this interaction in the 
k«p scheme, we get an additional term of the form 
coVFXp*s, where co is a small parameter. This interac
tion differs essentially from the k«p interaction in that 
it mixes nondegenerate free electron states, co is the small 
parameter which gives us the rapid first-order con
vergence. The terms in the k«p expansion which will 
dominate are those in which the mixing of nonde
generate reciprocal lattice states is done with the spin-
orbit term. All other terms will be quadratic in small 
parameters. Hence, the rate of convergence is close to 
the rate of convergence of the k«p terms. 

III. DERIVATION OF THE WAVE FUNCTIONS 

The wave functions desired are solutions of the 
Schrodinger equation which correspond to electrons 
in the conduction band of the alkali metals, and which 
include the effects of spin-orbit interaction. We simplify 
the problem immediately by demanding solutions 
within a spherical atomic cell. In this case, it is assumed 
that the Schrodinger equation can be written in the form 

-§a 2 fw(t,t')l,.Sty(r')di' = 0. (3.1) 

The wave function, \Kr)> is a two-component spinor, 
and the integrals include spin summations. Terms of 
higher order in (1/mc2) which come from a further 
decoupling of the Dirac equation have been neglected. 
e is minus the energy in rydberg units, (—meA/2fi2). The 
first Bohr radius, (&2/me2), is the unit of length, and a 
is the fine structure constant, (e2/hc~:l/137). The non
local F(r,r') should include spin-independent relativistic 
terms to this order. W(r,tf) is an attempt to simulate 
these, and spin-other orbit interactions, in the spin-
orbit term. This form remains as an unproved assump
tion, but seems consistent with the work of Blume and 
Watson.19 It is sufficient in this analysis, to have a non
local interaction such that J2, L2, and mj (the magni-

19 M. Blume and R. E. Watson, Proc. Roy. Soc. (London) 270, 
127 (1962). 



A 788 A. B I E N E N S T O C K A N D H . B R O O K S 

tudes of the total angular momentum and the orbital 
angular momentum, and the third component of the 
total angular momentum) are good quantum numbers, 
and which falls off sufficiently quickly so that W(t,r') 
is negligible when r or r ' is in the region outside the 
ionic cores. 

The wave function may be written in the Bloch form 

^n(k,r) = **•'«„ (k,r). (3.2) 

This is a consequence of the periodicities 

F ( r + R , r ' + R ) : = F ( r , r ' ) 

and 
T F ( r + R , r / + R ) = W(r,r /) J (3.3) 

where R is any repeat vector of the lattice. 
In the spherical approximation, it is assumed that 

within the spherical cell F(r,r ') and W(r,t') are in
variant under simultaneous rotations or reflections of 
both coordinates. 

For each value of the energy parameter e there 
exists a set of solutions of this partial differential 
equation which correspond to eigenfunctions of the 
operators | J | , | L | , and mj. These functions are com
plete for describing an arbitrary solution of Eq. (3.1) 
with fixed energy e. They are of the form 

FJlL(r)\J,L,mj) = 
Fi+hL(r) /(L+m+iyiWL,m{f) 

\ {L-myiWL,m+1{f))' (2Z+l ) ! /2 \ (L-my/2Y 

= FL^>L(r) 
(L-m)^YLtm(r) 

(L+m+l)V*YLtmH(t) 
) , J=L-i 

(3.4) 

where m=mj~^', with respect to an arbitrary axis the functions of Eq. (3.4), we may write, to third order, 
usually determined by an external magnetic field. 

oo L+% 
The spherical harmonics are normalized on a unit /' v^ v v^2 v ha A (h\i? ( ~\ 

sphere, and their arguments are the orientation angles 
of the vector r. The F's obey the differential equation 

<7=0 L=0 J=L—\ mj 

X\J,L,mj). (3.8) 

•(Vr2+e)Fj,L(r)- / VL(r/)Fj,L(r')dr' 

- (c?/4)lJ(J+l)-L(L+l)-3/t] 

X WL(r/)Fj,L(r')drf = 0, (3.5) 

This is not yet a true expansion in k, as e is also a 
function of k. To third order, 

e=eo—EJi% 

and 
(3.9) 

Fj,L(e,r) = Fj,L(eo,r)-E2mFj,L(eo,r)/de. (3.10) 

where 
a2 2 a L{L+\) 

v r
2 = — + 

dr2 r dr r2 
(3.6) 

Then 

^ = E E n At,J,L,ni/(k)Fj.i,M\JJ.,fHj) 
g=0 L,J,mJ L 

. dFj,L(e0,r) 1 
—Aq-2,j,L,mj(k)E2 \J,L,mj) . (3.11) 

de J The Fz,(r,r') and WL^/) are defined in the Appendix. 
The procedure used for the determination of the 

form of the wave function is an analog of that described Henceforth, the label e0 is dropped from the notation. 
by Brooks.1 \p is expanded in a power series in k, with For simplicity, the Fj,L's are normalized in the follow-
terms retained to third order. Corresponding to the m g manner: 
alkali metal conduction electrons, yf/ is required to be F , \ # r \ — p ( \ — i 
s like at the bottom of the band (4 = 0), where Sz is a *jMe,r.)-*j.i[e,r.)-Pj.i[*,r9)--L, 
good quantum number, and to obey the Wigner-Seitz rsdFjt2(e,rs)/dr= 1, (3.12) 
boundary conditions for all e. In addition, we write 

L+l L 
FL(e,r) = F/+!,L(e,f)H FL^>L(e,r), 

2L+1 2L+1 (3.13) 

exp(—ik-r,)^(k,r8) = exp(tkT8)^(k, - r s ) , 

exp(—ik'T8)d\l/(k,t8)/dr 
= — exp(ik-rs)a^(k—,r8)/dr, (3.7) 

u . M . j . AFL(e,r) = Fi+i,L(e,r)-Fi^,L(*,r). 
where rs is an arbitrarily oriented vector to the surface 
of the Wigner-Seitz sphere. Using the completeness of The functions FL{^T) are good approximations to 
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the radial functions which are obtained when spin-orbit 
interaction is neglected. They differ by terms which are 
second order in the spin-orbit parameter. The AFL(e,r) 
are first order in the spin-orbit parameter. 

The wave function of Eq. (3.11) is capable of satis
fying the boundary equations (3.7) to third order in k. 
As discussed by Brooks,1 for each value of .q, one of 
these equations forces L to be even or odd as q is even 
or odd. The other equation, since rs is arbitrarily 
oriented, must be obeyed by the coefficient of each 
YL,m. This fixes all but two of the coefficients in Eq. 
(3.11). One result is that the value of L within a uq" 
term cannot exceed q itself. This result follows, as 
well, from the k«p analysis of the last section. The re
maining two coefficients are fixed by the requirement 
that the wave functions be normalized in the Wigner-
Seitz sphere. That is 

/ 
| * | * d r = l . (3.14) 

Finally, the following abbreviations are introduced: 

radFL(ra)/dr=<t>L, £ , = 0 , 1 , 3 

l/2?,(»>) = * » , (3-15) 

rsdAFL(rs)/dr=A<l>L. 
# 

Derivatives of the <J>L and Ac/>L with respect to e are 
denoted by primes. 

Two types of angular variation appear in the wave 
function. The first, that which is present in wave func
tion expansions which neglect spin-orbit interaction, 
has terms proportional to 

_ /YL,m*(k)YLtfn(t)\ . / 1 \ 

i m \ o / w 
(3.16) 

To evaluate Eq. (3.14), Eq. (A 1.1) is used. 

To first order in spin-orbit interaction, the coefficients 
of these factors are equal to the coefficients in Brooks's 
expansion.1 The spin-orbit interaction introduces angu
lar variations of the form 

4<7T (mYLtm*(k)YL,m(f) 

2L+1 m \((L+m+i)(L-m))U2YL,m*(k)YLtm+1(r) 

where 

fO 1\ 

)=(l^)PL(k'f)( \=(-i/kr)(xxk-<r)PL(k.r)( V (3.17) 

-d oK 7H .> (3.18) 

The coefficients of these terms are proportional, to first order in spin-orbit interaction, to the AF-L(r8) or some 
derivative of them. These terms indicate the admixture of a small negative spin component into a primarily positive 
spin wave function. 

The wave function which includes the effects of spin-orbit interaction to first order in that interaction and which 
satisfies the Wigner-Seitz boundary conditions to third order in the Bloch vector is 

HKr) f ( A r . ) 2 / * i \ V 2 3 

N 3 \< 

(K>7<M1/2 d 

sO£fHK<M'41+^-$] 

( 

\ (kr3y/<t>i\w dr/^x^ -|l . / 1 \ Afa 6*iAF,(r.) 
){krsyt\(r) 

5<fo 25 / 3 \ (/>(// de\-\(j>[ 

0 C2(*r.)V3>1f2(r)P1(ife-0 - [2 (^ s ) 2 /15 l0 iAF 2 ( r )+(5 /6)A^ 1 ^ 2 ( r ) ] (L-a )P 2 ( fe - r ) 

-i(krsy(2/5) 

0 
( - ) — ~\F*(r)P3(k-r)( )—»(*r.)«(2/35)J["(—)— J A ^ W + I ^ A ^ M / ^ ) ] 

• W ) P , ( M ( ) • + [14AF,(r.)F,(r)/15] (L (3.19) 
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The normalizing factor is 

iV=(47rrs0oO-1/2. (3.20) 

When the F's and AF's are obtained from the solu
tions of the Schrodinger equation (Al . l l ) with nonlocal 
/ - and Z-dependent potentials, the wave equation 
(3.19) is formally equivalent to a third-order k p ex
pansion of the wave function which includes the effects 
of the nonlocal potential and which is first order in 
spin-orbit interaction. 

In the calculations which are described below, all 
terms which are proportional to AFz(r), AFz(r) or their 
derivatives have been neglected. These terms are sig
nificantly smaller than terms proportional to AJPI. This 
is because the radial functions for L>\ are smaller 
than Fi(r) in the vicinity of the nucleus, where the 
spin-orbit interaction is significant, owing to the centri
fugal potential in the radial wave equation. The neglect 
of these terms has been justified by numerical 
calculations. 

IV. EVALUATION OF THE g SHIFT 

Using the techniques of Luttinger and Kohn,20 as 
extended by Kjeldaas and Kohn,21 Yafet14,22 has shown 
that the g shift is given by the average over the Fermi 
surface of 

2\_\A.'Xy ±TCX)nn~T&nn\'Ky) nn~~ I nn\Rx) nnj j V * T ) 

where the subscripts nn indicate that these are expecta
tion values for conduction band states. 7c is the velocity 
operator, p+( l /2c 2 )S x VV, and the matrix elements 
of X are defined by 

dum(k,r) 
un* (k,r)i dx. (4.2) 

' unit cell dkx 

2Ln -I 
J un 

The z axis is the direction of the applied dc magnetic 
field. 

This expression was obtained under the approxima
tion that the one-electron potential is local. The effects 
of a nonlocal potential are now being studied. 

To second order in the Bloch vector, this expression 
may be rewritten as 

+ (l/mc2) \\P*[_xdV/dx+ydV/dy}pdx 

#*(r x V k)zdu/dv+2ikpu*(t x Vk)zu 

du d 

> dky dv 
-(xu*)-

du d 

dka 
-<,».,}}s 

rkydf* d ty kxd^ d fy' 

Lkx dkx dv dkx ky dky dv dkyJ 
_ I m / I — — - 1 - U (4.3) 

20 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955). 
2 1T. Kjeldaas, Jr., and W. Kohn, Phys. Rev. 105, 806 (1957). 
22 Y. Yafet, Solid State Phys. 14, 1 (1963). 

where the integrals are over the atomic polyhedron, 
and v indicates the direction of the normal to the 
surface of this polyhedron. In the spherical approxima
tion, v is the parameter r, V is the local potential used 
in the k-p analysis. 

The first term is twice the expectation value of the 
z component of the orbital angular momentum, which 
was first calculated by Brooks.12 I t is recalculated here 
to take advantage of further refinements of the QDM. 
The additional terms have been discussed by Yafet.22 

Substituting the wave function of Eq. (3.19), with 
neglect of terms proportional to AF2(f) and AFz(r) and 
terms which are quadratic in A0i, using Eq. (Al. l) , per
forming the required surface integral, and averaging 
over all directions of k, the following expression is 
obtained for the g shift: 

A g = - A 0 i 
2 r 2 2kW\ 

9<£0' 270, 

+A4>i' 

+-

4 r 401 e (4>i \ 

,'L 02 deW / 

0 L 0(/ J 

6(krs} 

1 r r dV dV~\ 
— / m x \-y— \ltdr. (4.4) 
tc2 J L dx dy J 

The authors have been unable to convert the last 
term into an expression in terms of the values of the 
radial functions at the surface of the atomic polyhedron. 
This prevents use of the QDM for its evaluation. This 
term yields a nonvanishing addition to the g shift in 
the absence of spin-orbit components in the wave 
function. Since the term is multiplied by the small 
parameter 1/mc2, the dominant portion of the integral 
can be obtained by writing u(k,t)=u(0,r). In this case 
the integral reduces to 

Sira2 

3 

r dV 
/ |lK*W|V—dr, 

dr 
(4.5) 

where a(= 1/137) is the fine structure constant. 
For Li and Na, local, k-independent potentials have 

been constructed, and can be used to evaluate this ex
pression numerically. For Li, the corrected potential of 
Seitz23 and the wave functions of Silverman24 have been 
used at rs = 3.2, eo = 0.683. The value obtained was 
2.3X10 -5 , as compared to a contribution of —2 to 
— 5X10~5 from all other terms. For Na, using the 
Prokofjew25 potential with the Wigner-Seitz26 wave 
functions, a contribution of 1.2X10 -5 is obtained, as 
compared to 5 —10X10 -4 from all other terms. For 
reasons which are discussed below, little confidence can 
be placed in numerical results which depend on values 
of derivatives of Prokofjew-like potentials sampled 

23 F. Seitz, Phys. Rev. 47, 400 (1935). 
24 R. A. Silverman, Ph.D. thesis, Harvard University, 1951 

(unpublished). 
25 W. Prokofjew, Z. Physik 58, 255 (1929). 
26 E. Wigner and F. Seitz, Phys. Rev. 46, 509 (1934). 
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near the origin. The orders of magnitude, however, are 
reliable. We expect this term to diminish in importance 
with increasing atomic number. The spin-orbit interac
tion goes as (l/r)dV/dr. For a spread-out dV/dr, as in 
lithium, the r weighting factor enhances the effect of 
this term, relative to the others. When dV/dr is only 
appreciable near the nucleus, the r weighting factor 
reduces the effect. Knowing that this term is insignifi
cant for sodium, we can safely neglect it for potassium, 
rubidium, and cesium. 

I t is of some value to examine expression (4.4) for 
free electrons. The vanishing of Ag comes directly from 
the vanishing of A#i and A<£/. In addition, it can easily 
be shown, using the values of the <J>L and their deriva
tives given by Brooks,1 that the term proportional to 
A0i reduces to 

- ( 1 ) . (4.6) 
\ 2700' A & V / 

Taking the Fermi surface value of k in the spherical 
approximation, (&rs)

2 = 3.68. The second factor is ap
proximately 0.185. The individual terms which enter 
into this factor are of the order of 1 or 2. Thus we 
expect, if the p and d functions are correct and close 
to free-electron-like, to have an approximate cancella
tion in the second factor. The contribution of this term, 
however, is extremely sensitive to the quality of the 
wave functions because it involves the cancellation of 
large terms. 

With the neglect of the last integral in Eq. (4.4), the 
g shift is determined entirely by the values of the radial 
functions and their derivatives at the surface of the 
Wigner-Seitz sphere. The methods^of obtaining these 
values are discussed below. 

V. THE RADIAL FUNCTIONS 

The radial functions are solutions of Eq. (3.7) which 
are regular at the origin. The difficulty of constructing 
such solutions comes primarily from the lack of knowl
edge of the VL(J/)> The Fz,(r,/) are one-electron 
potentials which include not only the Coulomb interac
tion with the nucleus and core electrons, but cer
tain many-body effects such as exchange and core 
polarization. 

In the usual Wigner-Seitz type calculation it is 
assumed that the potential, within the sphere, is the 
same as that seen by an atomic valence electron. Before 
considering the validity of this procedure, we examine 
its implication with respect to a calculation of the 
parameters A<£L and their derivatives. The obvious 
procedure, which has been used in many calculations of 
the properties of lithium and sodium, is to construct 
Prokofjew-like potentials which match the atomic 
spectra. The shortcomings and difficulties in using such 
a procedure to calculate other properties of the alkali 
metals heavier than sodium have been discussed in 
detail in earlier papers on the QDM.1 - 3 

These difficulties are demonstrated explicitly in the 
analysis of the sphericalized nonlocal potential. That is, 
the effective potentials in the wave equations deter
mining the radial functions are / and L dependent. In 
studies of the spin-orbit interactions, another weakness 
of the Prokof jew method becomes apparent. I t is least 
likely to be an accurate representation of the potential 
in the region of small r. This inaccuracy leads to an even 
greater uncertainty in the value of its derivative near 
the origin whence comes the greatest contribution to the 
spin-orbit splitting. Thus, its use in a g-shift calculation 
is unlikely to give good agreement with experiment. 

To see the increase in error of the Prokof jew potential 
with decreasing r, it is necessary to examine the manner 
in which this potential is obtained. Prokofjew25 used 
the expression 

(n-L-i)=W/w)J{Q(r)-i 

XZ**+(L+i)*iyi*dr/r, (5.1) 

where n=e~112 and Q(r) = r2V(r) to derive V(r). The 
limits of the integral bound the region in which the 
integrand is real. I t is assumed, for sodium, that 
the potential is Coulombic, i.e., Q(r) = 2r, for r>6.74. 
For r<6.74 it is assumed that in given regions Q(r) 
=ar2-\-/3r+d. Examination of the integrand shows that 
as e and L vary, the limits of integration vary. Here, 
starting with Q(r) = 2r for r> 6.74, the choices of atomic 
eigenvalue e's and L's can be such that regions of de
creasing r are brought into the integration. For each 
new region of r a new set of a, 0 and y are defined. 
Three equations determine these parameters. Two of 
these are chosen to match Q(r) and its first derivative 
at the boundary of the region. The third is chosen so 
that Eq. (5.1) is satisfied. Because the functional form 
used is probably not that of the "best" effective po
tential, errors are introduced. I t is clear that these 
errors will tend to pile up for small r. The Prokofjew 
potential tends to give good results when it is integrated 
over a large region with a smoothly varying function, 
such as the absolute square of a wave function. The 
values of the potential in the region near the nucleus 
are less reliable. Finally, the derivative of the potential 
near the origin can be seriously in error. 

In addition to this source of error, there is another 
problem associated with using the Prokofjew potential 
to calculate the spin-orbit splittings. The work of Blume 
and Watson17 shows that, due to the different manner 
in which exchange enters into the two terms, the po
tential appearing in the spin orbit term is not the same 
as the effective potential which is derived from the 
atomic spectra. 

These shortcomings of the Prokofjew potential in 
treating spin-orbit interaction are shown numerically 
below. They demonstrate the potential virtues of the 
QDM, which avoids the explicit construction of a 
potential in the region close to the nucleus, and auto
matically gives a correct treatment of the spin-orbit 
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term. I t is this method which has been used to calculate 
the radial functions. Since the method has been de
scribed in detail by Brooks and Ham,1 - 3 it will be dis
cussed in only the degree of detail necessary to justify 
the adaptation used in this paper. 

In its simplest form, the method assumes that the 
potential seen by an atomic alkali metal valence elec
tron is Coulombic in the region outside the ion core. 
In this case, the radial solution for a state with 
fixed total orbital angular momentum and energy 
E— — e~ — \/n2 can be written as (l/r)UL(e,r), where 
UL(e/) satisfies the differential equation 

d2UL 

dr2 

2 L(L+1)~ 
€+ 

r 
\UL=Q. (5.2) 

This equation has two linearly independent solutions. 
Brooks and Ham have chosen to work with the pair 

»UL-*(r)=(z/2)JtL¥1*(z), 

*UL'n(r)=(z/2)NiL+in(z), (5.3) 

where %— (8f)1/2. These functions have been discussed 
in detail by Kuhn and Ham,27 and tabulated by Blume, 
Briggs, and Brooks.28 As e goes to zero they approach 
the Bessel and Neumann functions, respectively. Then 

UL(e,r)=a(n) °UL>n(r)+t3(n) 2UL>n(r). (5.4) 

For an atomic eigenstate, the ratio a(n)/p(n) is fixed 
entirely by the condition that UL(r) vanish as r goes to 
infinity. 

This ratio is 

a(n) T(n+L+1) 

j8(w) n2L+1T(n~L) tan?r5w 

(5.5) 

where 5m is the quantum defect, in terms of which the 
eigenvalue is expressed as 

e^(m-8m)-2. (5.6) 

Here m is an integer that increases by unity between 
successive terms of a given series. 

If it is assumed that the potential seen by an alkali 
metal conduction electron, when it is within the ionic 
core, is the same as that seen by the atomic valence 
electron, and that the potential in the region outside 
the core and enclosed by the Wigner-Seitz sphere is 
pure Coulombic, then the radial wave function outside 
the core can be obtained quite simply. In this case, the 
solutions will again be linear combinations of Coulomb 
solutions of the form of Eq. (5.4), with n corresponding 
to the solid-state energies. The problem is to find the 
correct ratio a(n)/(3(n). Brooks and Ham have shown 

27 T. S. Kuhn, Quart. Appl. Math; 9, 1 (1951), and F. Ham, 
ibid. 15, 31 (1957). 

28 M. Blume, N. Briggs, and H. Brooks, Technical Report No. 
260, Cruft Laboratory, Cambridge, Massachusetts, 1959 
(unpublished). 

that if the quantity rj is defined by the expression 

tanm/ = -n2L^Y(n~L) tanwdm/r(n+L+l) (5.7) 

at the atomic eigenvalues, the ratio of a(n) to /3(n) is 
given by 

P(n)/a(n) = -ten.mi(n) (5.8) 

at the solid-state energies. Here, rj(n) is the value ob
tained by extrapolation of the function rj(n) obtained 
from the atomic eigenvalues down to the solid-state 
energies. With a knowledge of rj it is possible to obtain 
the radial functions. Before doing this, however, we 
list the two major assumptions which must be made. 

(1) The atomic potential is Coulombic beyond the 
core. 

(2) The potential in the solid is the same, within the 
core, as the atomic potential, and is Coulombic from 
the core surface to the Wigner-Seitz sphere radius. 

Corrections will have to be made for deviations from 
these assumptions. Before dealing with these correc
tions, we proceed to evaluate the alkali-metal parameters 
that are needed. 

I t is evident that the rj function is, like the quantum 
defect, an indication of the deviation of the core 
potential from pure local Coulombic. I t follows from 
the analysis of Appendix I that there must exist a 
different rj function for each / and L value, correspond
ing to the different Fz,(*y') , s and WL(r/ys as well as 
the different coefficients associated with the spin-orbit 
interaction. 

For each / , L function with e=e0 , we can write for 
ro<r<r8, where r0 is the ion core radius, 

Fj.Ur) « PUL-n(r)-tanin,jtL(n) 2UL>n(r)yr. 

Since n always corresponds to the energy at the 
bottom of the band, this index is dropped, henceforth. 
The condition that FJ>L(rs) = 1, L = 0, 1, 3, implies that 

rs[°UL(r) - Umrr]j,L2UL(r)J 
Fj,L(r) = — . (5.9) 

r\?UL(r.)-taxwjtL*UL(r.)-] 

In analogy with Eq. (3.15) we write 

VL-L(L+l)VL+hL+Lr}L_hL2/(2L+l) 

Ar)L:=riL~±,L--riL+i,L> 
(5.10) 

ArjL represents the effects of spin-orbit interaction and 
is a small parameter for all the alkali metals. Expanding 
ta,nirrutL about t a n ^ L , we get 

rJi°UL(r)-taJXiniL2UL(r)2 
FL(T)= , . . + 0 [ ( A ^ L ) 2 ] (5.11) 

r^UL{rs)~t^irr]L
2UL{rs)'} 

and 

AFL(r) = Trr8AriL stc27rrjLl0UL(rs)-VdnTrr)L
2UL(rs)y-2 

X { 2 ^ W C ° ^ ( f s ) - t a n 7 r ^ 2 ^ ( r s ) ] 
- 2 ^ ( r s ) [ ° ^ ( r ) ~ t a n 7 r ^ 2 ^ ( r ) ] } . (5.12) 
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From the usual Wronskian relation, Brooks and Ham3 

have shown that 

TABLE I. Extrapolation formulas for the rj and AT;.8 

d2UL(r) d°UL(r) 2 
°UL(r)~ 2UL(r) = - , 

dr dr ir 
(5.13) 

Differentiating Eq. (5.12) with respect to r, evaluating 
it at r = rs, and using Eq. (5.13) we get 

A(j)L:=2rsAr]L sec?wrjL 
X L°UL(rs) - t2HiwrjL2UL(rs)J-2. (5.14) 

Similar relations are obtained for the L—2 functions, 
which are normalized differently. 

In Table I, the extrapolation formulas used to 
calculate the TJL and ATJL are listed. For Z,=0, these are 
identical to those obtained by Brooks and Ham3 for all 
the metals but cesium. I t was noticed that the atomic 
spectra of cesium used by those authors, as obtained 
from Bacher and Goudsmit,29 are different from the 
more recently observed values which are listed in 
Moore.30 Extrapolation formulas for the rjjti were de
veloped using the three lowest conduction-free atom 
eigenstates, plus the ionization potential for the singly-
ionized atom, as discussed by Ham.2 These were then 
used to calculate 171 and Arji. Ariz was calculated in the 
same manner as A171, while the ' "bes t " extrapolation 
formulas of Brooks and Ham3 were used for 772. The 
reasons for this are discussed below. 

Thus far, it has been assumed that the two condi
tions, mentioned above, for the validity of the QDM 
are satisfied. Unfortunately, this is not the case. In the 
following subsections, the effects of various deviations 
from these assumptions are discussed. 

A. The Polarization Correction—Brooks and Ham 

Due to the fact that the valence electron tends to 
polarize the ionic core, the potential seen by the valence 
electron is never pure Coulombic. Treating the ion core 
as a dipole, Brooks and Ham have found correction 
terms for the rj extrapolation formulas. The g-shift cal
culations have been performed with and without the 
corrections applied for L = 0 and 1. For the L = 2 states, 
as discussed by Brooks,1 it is impossible to obtain con
sistent extrapolation formulas for Rb and Cs without 
the polarization correction. Thus, these have been 
used throughout. 

B. Spin-Orbit Interaction Outside the Core 

In principle, the spin-orbit interaction outside the 
core could influence the ATJL values. For most of the 
alkali-metal atoms, however, the major portion of the 

29 R. F. Bacher and S. Goudsmit, Atomic Energy States 
(McGraw-Hill Book Company, Inc., New York, 1932). 

30 C. E. Moore, Natl Bur. Std. (U. S.) Circ. 467, Vols. I, II, 
and II I (1949, 1952, 1958). 

Lithium 
VO 
Vop 
Vi 
Vip 

Am 
V2 

Ar)2 

Sodium 
Vo 
VOP 

Vi 
Vip 

Am 
V2 

Ar}2 

Potassium 
Vo 
Vop 
Vl 
Vlp 

Am 
V2 

Ar)2 

Rubidium 
Vo 
Vop 
Vi 
VIP 

A171 

172 
Ar? 2 

Cesium 
Vo 
Vop 
Vi 
Vip 

[Am 
V2 

A172 

a 

0.399501 
0.399106 
0.047368 
0.046997 
0.000004 
0.00086 
0.000004 

1.34797 
1.34673 
0.855176 
0.853052 
0.000858 
0.01041 

-0.000023 

2.180059 
2.176388 
1.711980 
1.706392 
0.003031 
0.2672 

-0.000158 

3.13119 
3.12560 
2.646294 
2.637512 
0.013216 
1.3371 
0.001646 

4.04967 
4.04161 
3.56983 
3.55598 
0.03256 
2.4642 
0.0091 

b 

0.029405 
0.027458 
0.020899 
0.013018 

-0.000097 
0.00032 
0.000086 

0.06197 
0.05606 

-0.01876 
-0.04462 
-0.00036 
-0.0072 

0.00019 

0.13915 
0.12243 
0.07427 
0.01709 

-0.00170 
-0.2969 
-0.00269 

0.18164 
0.16017 
0.16186 
0.08976 

-0.01333 
0.0385 

-0.01659 

0.23156 
0.19545 
0.30396 
0.20848 

-0.04274 
0.1687 

-0.04884 

a The extrapolation formulas are of the for 

c 

0.00238 
0.00238 
0.02888 
0.02888 
0.00055 

0.000298 

0.01071 
0.01071 
0.05212 
0.05212 
0.00167 

-0.00085 

0.0502 
0.0502 
0.0988 
0.0988 
0.0019 
0.2289 
0.0100 

0.0879 
0.0879 
0.08573 
0.08573 
0.01787 

-0.5256 
0.0284 

0.27776 
0.27776 
0.02483 
0.02483 
0.05396 
0.9023 
0.04470 

d 

-0.01977 
-0.01977 
-0.00040 

-0.0574 
-0.0574 
-0.0002 

-0.07367 
-0.07367 
-0.00404 

-0.033852 
-0.033852 
-0.07774 
-0.07774 
-0.01338 

tn rj —a-\-be~\-ce'i+dez. 

interaction takes place near the nucleus; it can easily 
be shown, using first-order perturbation theory, that a 
small deviation of potential 5V from Coulombic in the 
region outside the core, will lead to a change in the 77 
calculated from an atomic eigenvalue given by 

8ri = - / [_UL(r)j8Vdr/sec2wv. (5.15) 

Then, to lowest order in Arj, the contribution to Arj from 
spin-orbit interaction outside the core is given by 

- ( 2 L + 1 V r dr 
dAnL=- • / [_UL{r)J~, 

4 secV^L J r0 f3 
(5.16) 

where ro is the cutoff radius used by Brooks and Ham 
in the polarization correction. 

To obtain the order of magnitude of this integral, the 
asymptotic expansion of the Whittaker function has 
been used. Brooks and Ham show that for an atomic 
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eigenstate oiWntL+\ (2r/n), 
sec[V(tt—Z—1)]| 

i7L'»(f) = ffw Prn,L+j(2f/»). (5.17) Wn>L+h(2r/n) = 2e~^nrn(2/n)n, (5.18) 
r(»+L+i). 

in Eqs. (5.17) and (5.16) and performing the required 
Using the first term of the asymptotic expansion integration, one finds 

dArj-
- (2L+l)o?n2L cos2Trr1T(2n-2){l-I[2ro/n(2n-2yi2, 2 » - 3 ] } 

C O S 2 [ T T ( ^ - £ - 1 ) ] P ( ;*+£+1) 
(5.19) 

where I is the incomplete gamma function, 

e~xxvd% / J erxxpdx. (5.20) 

The values obtained for the dArj's are listed in Table I I . 
The numerical values of AT? at these values of n, com
puted from the extrapolation formulas of Table I, are 
also listed. Only for lithium is 8Arj an appreciable frac
tion of At]. For the Li 2p state, the 8Ar] is approximately 
24% of Arj. For the Sp and 4:p states the observed value 
of Ar? is zero, while a finite and measurable value is 
calculated for 5Atj. This is due to the inadequacy of the 
calculation. Since the potential is monotonically de
creasing for all r, the contribution to the diagonal 
elements of the spin-orbit interaction must always have 
the same sign. The contribution from the surface of the 
core outward cannot exceed the total contribution. 
The error probably comes from the use of only the first 
term of the asymptotic expansion of the Whittaker 
function. Most of the contribution to the integral comes 
from the region near the surface of the core, because 
of the fast drop off of both the radial function and 1/V3. 
In this region the first term approximation is least valid, 
and becomes less valid with increasing n. In view of this 
error it is reasonable to ignore this calculation for the 
lithium 3p and 4p states and to do a more accurate 
calculation for the lithium 2p state. 

The calculation does place an upper bound on 8Arj. 
Thus, the dArfs for the remaining elements can be 
treated as negligible. 

TABLE II. dArj for p states of the alkali-metal atoms. 

State -SATJXIO 4 A??X104 

U-2p 
3p 
4p 

Na-3/> 
4p 
Sp 

K-4^ 
Sp 
6p 

Rb-5p 
6p 
Ip 

Cs-6p 
Ip 
Sp 

0.0376 
0.126 
0.207 
0.0299 
0.129 
0.222 
0.0208 
0.116 
0.189 
0.0173 
0.110 
0.196 
0.0165 
0.100 
0.204 

0.1567 
0 
0 
8.564 
8.438 
8.424 

27.64 
29.42 
29.43 

112.9 
121.5 
125.6 
265.1 
292.5 
305.0 

For the lithium 2p state the integral 

»io.o f 
J2.8 

was carried out using quantum defect wave functions 
(i.e., using the tabulated Coulomb radial functions with 
a ratio determined from the quantum defects). The 
value of the integral was 0.1076. A calculation of the 
remainder of the integral, from 10.0 to infinity, using 
the first term of the asymptotic expansion, yielded the 
negligible value of 1.955X10-4. The corresponding 8Arj 
is — 0.417X10 -5. The resulting extrapolation formula 
is listed in Table I. 

For sodium a more complete discussion of atomic 
spin-orbit splitting is possible, because of the existence 
of the effective one-electron potential of Prokofjew25 

and the radial functions, (l/r)Pz(r), of Biermann and 
Leubeck.31 These wave functions are solutions of the 
Hartree radial equation with core polarization included 
in the potential. 

A numerical integration of {{_Pz(r)~f(\/r)(dV/dr)dr} 
yields the result that over half the total value of the 
integral comes from the region r<0.20, while almost 
the total value of the integral is reached before Pz(r) 
has its first maximum at r — 0.45. This localization of the 
interaction becomes much greater with increasing 
atomic number. 

This calculation shows two things. First, spin-orbit 
interaction outside the core is negligible for all the 
alkali metal atoms but lithium. Second, the interaction 
is confined to that region in which the Prokofjew 
potential is least accurate. 

The total value of the integral yields a splitting, 
A£=1.942X10-4 , while the observed value is 1.567 
X10 - 4 . The discrepancy cannot be reduced by second-
order perturbation. The error is either due to an error 
in the radial functions (which would have to be over 
10%) or the failure of the derivative of the Prokofjew 
potential to represent the spin-orbit interaction. For the 
reasons presented at the beginning of this section, it is 
felt that the latter is the more likely cause. 

31L. Biermann and K. Lubeek, Z. Astrophys. 25, 325 (1948). 
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C. Influence of the Interaction Between Conduction 
Electrons on the One-Electron Potential 

The assumption that within the Wigner-Seitz sphere 
the potential is Coulombic outside the core is based on 
the Wigner-Seitz approximate treatment of the interac
tion between conduction electrons. They assume that 
both exchange and correlation tend to keep all other 
conduction electrons out of the sphere under considera
tion. The other conduction electrons contribute no 
electric field in the sphere and may be ignored in the one-
electron potential. 

Phillips32 has derived an effective one-electron Hamil-
tonian which includes conduction electron interactions 
within the random phase approximation. This Hamil-
tonian includes, in addition to the Wigner-Seitz po
tential, a Hartree term due to the &-space average of 
the conduction electron density, a screened exchange 
term, and a term due to part of the second-order 
screened Coulomb interactions. In a subsequent paper, 
Phillips and Kleinman33 showed that the Slater34 gen
eralization of the free-electron exchange potential is a 
good approximation to these exchange and correlation 
terms in silicon. The Slater potential should be a still 
better approximation in the region outside the alkali 
metal cores, as the electron density is a considerably 
more slowly varying function of position than it is for 
silicon. 

The Slater potential, however, depends only on the 
electron density. Throughout most of the region outside 
the alkali metal cores the electron density is essentially 
constant. The Slater exchange potential is just a 
constant which changes absolute energy values, but 
not the wave functions. For this region an approxi
mately self-consistent Hartree term has been added to 
the potential outside the core. A method of obtaining 
such a potential which is consistent with the QDM is 
described below. 

The restriction on the form of potentials in the solid 
can be relaxed in the following manner. The potential 
within the core must be the same as the atomic potential. 
Let the potential outside the core reduce to the atomic 
potential for r<riy where ro<rl<rs. Solutions of the 
resulting differential equation can be adjusted so that 
they reduce to the solutions of the radial equation at 
r=r{. In that case, their ratio at r=riy and, hence, for 
r>Ti, is determined by Eq. (5.8). Thus, the QDM can 
be extended to treat any potential which reduces to 
Coulombic at and below some acceptable r*. We choose, 
therefore, for the construction of the appropriate Har
tree potential, a spherical shell of constant electron 
density extending from the core surface to the surface 
of the Wigner-Seitz sphere. The electron density in this 
shell is equal to the density at the surface of the sphere, 
\\{/(r8) j 2 . The contributions of all but the & = 0 part of 

32 J. C. Phillips, Phys. Rev. 123, 420 (1961). 
33 J. C. Phillips and L. Kleinman, Phys. Rev. 128, 2098 (1962). 
34 J. C. Slater, Phys. Rev. 81, 385 (1951). 

the u(k,r8) are neglected. The other terms are small 
but may not be negligible. 

Then 
|^ ( r , ) | 2 =(47rr^o0- 1 . (5.21) 

The resulting potential, whose constant part is chosen 
so that F(ro) = 0, is 

V(r) = - (3^o , ) - 1 C(^ 2 "^o 2 )+2f / ( r - 1 - ro - 1 ) ] . (5.22) 

The resulting radial differential equation is 

d2U r 2 L(L+1) 

— + *'+ +(3r^o,ri 

dr2 L r r2 

X[( r 2 - fo 2 )+2fo 3 ( r - 1 - ro - 1 ) ] ]^7=0 . (5.23) 

Here ef is an energy parameter equal to e plus a term 
resulting from the choice of boundary conditions. This 
will be treated in more detail by one of us (H.B.) in a 
discussion of the cohesive energy. I t is of no interest in 
the determination of the radial functions. 

In order to take advantage of previously tabulated 
functions, equation (5.23) has been simplified further. 
Blume, Briggs, and Brooks35 have obtained numerical 
values for the solutions of 

d2U r 2 L(L+1) n 
+ e '+ +/3(f 2 -4) Z7=0 (5.24) 

dr2 L r r2 J 

with p and e' in the desired range. This"corresponds to 
neglect of the r^/r term, and fixing of ro equal to 2. 
Since, in terms of the electric field intensity, the r<?/r 
term tends to provide a partial cancellation of the r2 

term, this approximation probably leads to an over-
estimation of the effects of the Hartree term. As will be 
shown, however, the results obtained are not without 
interest. 

Self-consistent solutions of Eq. (5.24) have been 
found iteratively. I t was required that solutions of 
Eq. (5.24) simultaneously satisfy the conditions 

*>c(€o0 = 0 (5.25) 
and 

Pu=(3rj>o')-1. (5.26) 

<£o/ is the calculated value of $o'. Equation (5.27) 
comes from the Wigner-Seitz boundary conditions. j3u 

is the value of fi used in the differential equation for the 
solution $(/. 

VI. NUMERICAL RESULTS 

In Table I I I the results obtained in four different 
calculations of the g shift, minus the contribution of 
the term of expression (4.5), are listed. The different 
calculations are the combinations of inclusion and ex
clusion of the polarization corrections (N and NP, 
respectively) and the Hartree term (H and NH, re-

35 M. Blume, N. Briggs, and H. Brooks (unpublished work). 
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TABLE III. Alkali-metal energy parameters and g shifts. 

fs 

Li-2.8 

NP-NH 
P~NH 

NP-H 
P~H 

Li-3.2 

NP-NH 
P~NH 

NP~H 
P-H 

Li-3.6 

NP-NH 
P-NH 

NP-H 
P-H 

Na-3.6 

NP-NH 
P-NH 

NP-H 
P-H 

Na-4.0 

NP-NH 
P-NH 

NP-H 
P-H 

Na-4.4 

NP-NH 
P-NH 

NP-H 
P-H 

K-4.4 

iVP-NH 
P-NH 

NP-H 
P-H 

K-4.8 

NP-NH 
P-NH 

e0 or €(/ 

0.7002 
0.6975 
0.7798 
0.7768 

0.6878 
0.6860 
0.7844 
0.7826 

0.6568 
0.6557 
0.7560 
0.7549 

0.6369 
0.6330 
0.7467 
0.7429 

0.6056 
0.6028 
0.7099 
0.7074 

0.5739 
0.5717 
0.6699 
0.6681 

0.5139 
0.5064 
0.6442 
0.6375 

0.4939 
0.4882 

E2 

0.6123 
0.6124 
0.6240 
0.6237 

0.7318 
0.7320 
0.7473 
0.7467 

0.8035 
0.8037 
0.8152 
0.8153 

1.0192 
1.0443 
1.0091 
1.0361 

1.0159 
1.0334 
1.0082 
1.0273 

1.0137 
1.0264 
1.0087 
1.0226 

1.1230 
1.2178 
1.0843 
1.1892 

1.0987 
1.1669 

-E4 

0.0204 
0.0180 
0.0020 
0.0101 

0.0316 
0.0293 
0.1232 
0.1190 

0.0298 
0.0273 
0.0348 
0.0320 

0.0115 
0.0544 
0.0327 
0.0681 

0.0088 
0.0036 
0.0107 
0.0135 

0.0331 
0.0492 
0.0400 
0.0230 

0.4353 
0.8226 
0.4385 
0.7804 

0.3445 
0.6069 

-Ag 

1.645 X10~5 

1.234 
5.512 
5.667 

2.502 
2.299 
4.401 
4.236 

2.403 
2.298 
4.521 
4.429 

7.425 X10~4 

4.442 
8.729 
5.938 

5.980 
4.596 
7.024 
5.852 

4.626 i 
3.918 
5.520 
4.994 

2.611X10-3 

-1.614 
3.080 

-3.098 

2.389 
0.317 

rs 

K-4.8 

NP-H 
P-H 

K-5.2 
NP-NH 

P-NH 
NP-H 

\ P-H 

Rb~4.8 
NP-NH 

P-NH 
NP-H 

P-H 

Rb-5.2 
NP-NH 

P-NH 
NP-H 

P-H 

Rb-5.6 
NP-NH 

P-NH 
NP-H 

P-H 

Cs-5.4 
NP-NH 

P-NH 
NP-H 

P-H 

Cs-5.8 
NP-NH 

P-NH 
NP-H 

P-H 

Cs-6.2 
NP-NH 

P-NH 
NP-H 

P-H 

eo or eo' 

0.6097 
0.6051 

0.4731 
0.4686 
0.5754 
0.5721 

0.4846 
0.4764 
0.6121 
0.6059 

0.4648 
0.4584 
0.5764 
0.5718 

0.4455 
0.4402 
0.5410 
0.5377 

0.4350 
0.4252 
0.5472 
0.5401 

0.4189 
0.4110 
0.5148 
0.5098 

0.4033 
0.3966 
0.4607 
0.4620 

£2 

1.0682 
1.1440 

1.0825 
1.1333 
1.0565 
1.1134 

1.1999 
1.3518 
1.1432 
1.3131 

1.1631 
1.2731 
1.1174 
1.2420 

1.1372 
1.2194 
1.0909 
1.1859 

1.1895 
1.4110 
1.0828 
1.3345 

1.1644 
1.3304 
1.0641 
1.2586 

1.1449 
1.2711 
0.7036 
1.0361 

-E, 

0.2581 
0.5880 

0.2888 
0.4707 
0.2007 
0.3526 

0.5645 
1.3678 
0.2564 
0.7375 

0.4941 
1.0538 
0.2411 
0.6301 

0.4789 
0.8767 
0.1991 
0.5263 

0.9228 
2.7528 
0.4022 
1.6452 

0.7277 
2.0014 
0.3858 
1.4025 

0.7385 
1.6536 

-0.9616 
-0.5865 

- A g 

2.766 
1.186 

2.004 
0.891 
2.326 
1.625 

0.853X10-2 

-2.562 
1.554 

-0.781 

0.788 
-0.980 

1.202 
-0.064 

0.659 
-0.333 

0.992 
0.263 

0.742X10-2 

-13.975 
2.878 

-9.904 

1.153 
-6.623 

2.587 
-4.545 

1.083 
-3.382 

8.734 
3.926 

spectively). In addition, the results of calculations of 
eo, E2, and £4 are tabulated. These energy parameters 
are determined by the equations1 

<£o(eo) = 0 , (6.1) 

E2= (m/m*) = [ r . W ( 3 0 o O ] , (6.2) 

2 r . W - 20i 5 0 / 50 o"0i- | 
E,= 1 - + . (6.3) 

150o'L 302 60(/ 12(0oO2J 

and 

We now proceed to examine the results for each of the 
alkali metals. 

Lithium. The results for lithium are particularly un
certain because of the large spin-orbit interaction out
side the core and the magnitude of expression (4.5). 
The numerical calculation of expression (4.5) using 
Silverman's wave functions corresponds to a NH-NP 

calculation. If the results, at rs = 3.26, are added to the 
results of the NH-NP calculation, the g shift obtained 
is — 2X10 - 6 , compared to the experimental value of 
( - 2 ± 2 ) X 1 0 - 6 obtained by Pressley and Berk.36 I t is 
clear that no significance can be attached to the 
calculated number, as it is the result of the subtraction 
of two numbers that are not accurate to the order of 
magnitude of the result. 

Sodium. The results for sodium are particularly in
teresting. In this case, there are experimental determina
tions of the g shift by Feher and Kip37 as well as King, 
Miller, Carlson, and McMillan.38 The two measure
ments yield Ag= ( - 8 ± 2 ) X 1 0 ~ 4 and (-6d=2)XlO- 4 , 

36 R. J. Pressley and H. L. Berk, Bull. Am. Phys. Soc. 8, 345 
(1963). 

37 G. Feher and A. F. Kip, Phys. Rev. 98, 337 (1955). 
38 G. J. King, B. S. Miller, F. F. Carlson, and R. C. McMillan, 

J. Chem. Phys. 32, 940 (1960). 
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respectively. The shape of the Fermi surface is very 
close to spherical, and the wave functions outside the 
core are very close to free-electron wave functions. All 
the approximations made in the theory, as well as the 
analysis of convergence, should be valid. 

The primary result of the calculation is the good 
agreement with the experimental values. As shown in 
Fig. 1, the result of the NP-H calculation at r8 = 3.92 
is -7X10-4 . The NP-NH also lies within the region 
of agreement of the two measurements. Those calcula
tions which include the polarization correction lie 
somewhat outside the area of overlap of the two 
measurements. 

Potassium. The following four results were obtained 
for potassium at rs=4.85: NP-NH, -2.2X10-*; 
P-NH, -O.6XIO-3; NP-H, -2.5X10-3; P-H, -1 .4 
X10~3. The value measured by McMillan39 was 
(—4.1±0.5)X10-3. None of the calculations are in 
good agreement with the experimental results. 

There is a clear separation between the results of 
calculations in which the polarization correction is in
cluded, and those in which it is neglected. The latter 
are in significantly better agreement with experiment. 

Rubidium. No measurements of the g shift of rubid
ium have been reported. We note that of the four 
calculations, those in which the polarization correction 
is included have extremely small negative or positive 
g values at physically realizable values of rs. 

Cesium. The values calculated for Ag are shown in 
Fig. 2, along with the result of the measurement of 
Levy.40 This figure shows quite clearly the trends 
associated with increasing atomic number, from Na on. 
First, |Ag|caic becomes too small for all types of 
calculations. 

a"~-
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FIG. 1. Calculated values of the sodium g shift, including (P) 
and not including (NP) the polarization correction, and including 
(H) and not including (NH) the approximate Hartree term in the 
potential. 

39 R. C. McMillan, Phys. Chem. Solids 25, 773 (1964). 
40 R. A. Levy, Phys. Rev. 102, 31 (1956). 

FIG. 2. Calculated values of the cesium g shift. 

The best agreement is obtained when the polarization 
correction is neglected, and the Hartree term is in
cluded. The neglect of the Hartree leads to poorer 
agreement with experiment, while the inclusion of the 
polarization correction considerably decreases the 
agreement. 

The relative contributions of the Hartree term to 
sodium and cesium are as expected. Whereas, for 
sodium the NH-NP and H-NP results are quite similar, 
the NH-NP calculated cesium g shift is only approxi
mately one third that predicted by the H-NP calcula
tion. It has been shown,1 using a perturbation theory 
argument, that the effect of the Hartree term increases 
with increasing deviation from free-electron character. 
The relative importance of the Hartree term in the 
sodium and cesium calculations illustrates this quite 
clearly. 

A detailed analysis of various terms in the H-NP 
calculated cesium shift shows that the value fails to 
agree with experiment because of an unexpectedly 
large positive value for the terms proportional to A$i. 
This term causes all the polarization corrected values to 
be too positive. It was shown, in the discussion of (4.6), 
that these terms are expected, for nearly free electrons, 
to yield a small positive contribution due to cancella
tions. Since cesium wave functions show considerable 
deviation from free-electron functions, less cancellation 
was expected. It can be shown, however, that if ex
pression (4.6) is used to calculate this term, there is 
some, but insufficient, improvement in the agreement 
with experiment. The failure to obtain agreement with 
experiment is due to the large value of A$i. Equation 
(5.14) was used to calculate this parameter. It has been 
shown, in addition, that no reasonable extrapolation 
of Am will yield a calculated shift in cesium which is 
in agreement with experiment. Finally, it has been 
shown that rji is sufficiently close to a half-integer at 
the energies involved so that small errors can make a 
considerable difference in the factor sec27T7?i[°i71(rs) 
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—•tan7T7/i2J71(rs)]]""2. In fact, it is these differences in 
771, both in the factor just quoted and in the partial 
cancellations, which account for almost all the difference 
in the P and NP calculations. 

Since the ^-series expansion of the energies converges 
rather slowly, it is not unreasonable to question the 
validity of using only the first two terms of the expan
sion of the g shift. I t turns out that the contribution of 
the second-order term is approximately one-quarter 
of that of the zero-order terms in the NP-H calculations 
for rs equal 5.4 and 5.8. I t is probable that the fourth-
order term is no larger than the second. Since it would 
be necessary to double the calculated shift to obtain 
agreement with experiment, it is highly unlikely that 
poor convergence is the major cause of the discrepancy. 

Thus, it appears as if agreement with experiment can 
be obtained for sodium using wave functions which 
include a Hartree term, but which neglect the polariza
tions correction to rjo and rn, while including them in rj2. 
The same procedure leads to the "best" calculations 
for the remainder of the alkali metals. For these, the 
inclusion of the L = 0 and 1 polarization corrections 
lead to physically unreasonable results, while the in
clusion of the Hartree term makes the results more 
reasonable. 

VII. THE POLARIZATION CORRECTION 

The consistent failure of the polarization corrected 
results, which becomes more drastic with increasing Z, 
casts considerable doubt on the validity of the correc
tion. In this section, we present a detailed study of the 
correction, in an effort to understand its failure. 

A. The Polarization Perturbation 

In making the polarization correction, a drjL has been 
subtracted from the uncorrected TJL. This 5T?L is com
puted, as discussed in Sees. VA and VB, using first-order 
perturbation theory to find the expectation value of 
the polarization potential. 2c//V4, from a radius r0, 
outside the core and inside rs, outward, ro is chosen to 
be approximately equal to the sum of the core and con
duction electron screening radii. This choice was made 
for the following reason. Within the solid, when the 
electron is within the screening radius from the core, 
the interaction between it and the core tends to ap
proximate that interaction in the free atom. When the 
electron is beyond the screening radius, the interaction 
tends to be screened. Three possible sources of error in 
this approach may be mentioned. 

I t is assumed that the core (nucleus plus electron 
core) distorts as a dipole, i.e., that the effect of the con
duction electron on the core can be treated as if the 
electron core acts as a rigid body. Thus, a dipole is 
created at the nucleus. In reality, of course, the conduc
tion electron distorts the electron cloud near the surface 
of the core. This surface distortion partially shields the 

inner electrons from the Coulomb field of the conduction 
electron. However, since the electron-electron interac
tion, when the conduction electron is outside the core, 
is Coulombic, the effective interaction can be treated 
as a sum of multipoles at the nucleus. The dominance 
of the dipole interaction is shown by a simple calcula
tion. The expectation value of finding the " / " electrons 
of the lighter alkali-metal free atoms within the core is 
exceedingly small. Their quantum defects, and the 
corresponding rfs should be due, almost entirely, to the 
polarization interaction. We have calculated 8rj for 
these electrons, using the Brooks and Ham dipole cor
rection.3 In all cases calculated, the results are in 
sufficient agreement with the rj calculated from the 
observed quantum defects to justify the dipole 
approximation. 

I t should be noted that in choosing the Brooks and 
Ham polarization correction the Pauling41 free-ion 
polarizabilities are used, rather than those of Tessman, 
Kohn, and Shockley42 (TKS). This choice was originally3 

dictated by the fact that the latter give quantum 
defects for L = 3 which are larger than those observed 
experimentally. I t has since become apparent, due to 
the work of Dick and Overhauser,43 that the (TKS) 
polarizabilities, which are derived from alkali-halide 
dielectric constants, are not to be equated with free-ion 
polarizabilities. This is because the relative displace
ments of alkali halide ions lead to distortions of the ion 
cores. These distortions contribute to the dielectric 
constant. Since, however, an appreciable portion of the 
forces causing the displacement are not electrostatic 
in nature, they should not be included in the free-ion 
polarizabilities. The reader is referred to the paper of 
Dick and Overhauser for an extremely lucid discussion 
of the details. 

Another approximation is made in the derivation of 
Eq. (5.15). I t is assumed that s ecVi^ /de is small 
compared to (2/ir)dk/de. Here drj/de is the derivative of 
the rj extrapolation formula at the atomic eigenvalue, 
while dk/de is the change of the k of Eq. (5.5) with a 
change in the atomic eigenvalue. This approximation 
was checked for the Sp state of cesium, for which the 
polarization correction is large, and was found to be 
valid. 

Thus, it seems highly unlikely that an approximation 
in the perturbation calculation of 8r}PL for the free atom 
is responsible for the poor results obtained. 

B. Polarization Effects in the Solid 

The conduction^'electron in the solid also polarizes 
the core. This fact is only partially taken into account 
in the simple QDM. For r<r0 it is assumed that the 

41L. Pauling, Proc. Roy. Soc. (London) A114, 181 (1927). 
42 J. Tessman, A. Kahn, and W. Shockley, Phys. Rev. 92, 890 

(1953). 
43 B. G. Dick, Jr., and A. W. Overhauser, Phys. Rev. 112, 90 

(1958). 
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polarization potential energy is the same as that in the 
free atom. For r>r0 the core polarization potential 
energy is not included. As discussed in an earlier paper,1 

there are two basic problems in the solid which do not 
appear in the free atom. The first is that in the solid 
there are other conduction electrons which tend to 
shield the interaction between the core and the electron 
under consideration. The second is that the electron 
considered may polarize several cores. We now consider 
both effects, starting with the shielding. 

In Ref. 1 the polarization interaction is worked out 
under the assumption that it can be treated as follows. 
The conduction electron creates a dipole at the origin. 
The field creating the dipole is a screened Coulomb 
field, with a screening radius, £c=1.3fs

1/2, determined 
by Pines.44 The potential, due to the dipole, acting on 
the electron, is also screened with the same screening 
radius. The resulting potential energy is given by 

V(r)=- — e x p )dr. (7.1) 

The magnitude of this potential energy, relative to the 
free-atom polarization, is readily seen when an ex
pression of the form V{r) = 2a!(A/r^~ b/r4) is made to 
agree with Eq. (7.1) at the cutoff and Wigner-Seitz 
sphere radii. For cesium, rs = 5A, the result is 

F(f) = 2a'(0.0138fs-
4~-0.0285r-4). (7.2) 

Both the potential and the field magnitude — dV/dr are 
significantly smaller than the corresponding free-atom 
values. If this model is correct, the interaction between 
the electron and cores in neighboring atomic polyhedra 
is negligible. In this context, it is probably more valid 
to use the Thomas-Fermi screening radius. Such a pro
cedure yields even smaller values for the potential and 
its derivative, so that we have not felt it necessary to 
perform the numerical calculation. 

This model, however, has a serious shortcoming. The 
success of the Dick-Overhauser43 shell model of the core 
indicates that an appreciable portion of the free-ion 
polarizability is due to distortion of the outer portion 
of the core. This is particularly true for those heavy 
alkali atoms in which the polarizability is appreciable. 
In the atom the distortion can be treated as a dipole 
at the origin because the interaction between the con
duction and core electrons is strictly Coulombic. 

The applicability of this model to the solid becomes 
questionable when it is considered that the screening 
radius is comparable with the radius of the core. Thus, 
in the solid, as opposed to the free atom, the valence 
electron sees the nearer side of the core with much 
greater effectiveness than the further side and, in con
sequence, the dipole model may considerably under
estimate the core polarization effects in the solid. 

There is another way of looking at this problem which 
44 D. Pines, Solid State Phys. 1, 367 (1955). 

tends to confirm this argument. Let us suppose that , 
for all values of r, the interaction between the conduc
tion electron and the core can be treated by an effective 
electric field. The field in the solid is different from that 
for the free electron. Within the core, however, they 
should be quite similar. In the free atom this field is 
continuous and should approach — (8c//V5+2/r2) as r 
approaches the cutoff radius from within. Since, in the 
QDM, the field within the cutoff radius is assumed to 
be identical to the free atom field, there is an incon
sistency. That is, if the shielded interaction is used 
outside the cutoff radius, there is a discontinuity in the 
field at this radius. 

Note that all the polarization-corrected QDM results 
presented here and elsewhere in the literature have this 
discontinuity built into them, since the solid-state 
polarization correction is neglected. To use the QDM 
then, it appears as if a term which yields a field of 
— &a'/r5 at the cutoff radius is approached from without 
should be included in the solid-state potential. 

This argument leads directly to the second question; 
when the electron is within one Wigner-Seitz sphere, 
does it experience an appreciable polarization interac
tion with the other spheres? A partial answer to this 
question can be obtained by considering the shielded 
interaction potential of Eq. (7.1). Cores in neighboring 
polyhedra will be shielded in approximately the manner 
described by this equation and this interaction should 
be negligible. 

I t is important to note that since the valence electron 
frequencies are smaller than plasma frequencies, 
valence electron screening will be significant. In fact, 
the field of the valence electron will be screened by the 
static dielectric constant, as discussed, e.g., by Pines.44 

The opposite is the case for the van der Waals interac
tions between cores, since the frequencies involved are 
greater than the plasma frequency. 

We are led to demand, then, a potential which gives 
the — 8a'/V5 field at the core surface, and a vanishing 
field at and beyond rs. A reasonable approximation to 
this was proposed previously1: 

[2a!{rs-*-r-*), r0<r<rs 

This expression probably overestimates the field for 
r=rs. 

The effects of this potential on the parameters used 
in calculating the g shift have been calculated. In all 
cases, the resulting changes were insignificant. This is 
not unexpected, as the potential is small. 

I t should be noted that the argument given above, 
resulting in Eq. (7.3), leads to another disturbing con
clusion. The polarization correction was calculated on 
the assumption that the potential within the core in 
the metal is the same as that in the free atom. This 
leads to the discontinuity in potential. The use of Eq. 
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(7.3) outside the core in the metal corrects the discon
tinuity in the field, but not in the potential. 

To remove this discontinuity it is necessary to sub
tract, from the free-atom eigenergies, an additional 
term equal to the expectation value of — 2a! jr^ within 
the core. Then it will be necessary to add, to the solid-
state potential, a perturbation term which is constant 
within the core, zero outside the core, and which makes 
V(r) continuous at the core surface. This term is 

Vcc(r) = 2a'(rs~*~r0-*). (7.4) 

We may add this correction throughout the cell, where 
it only changes the definition of €o or €</. Then it must 
be subtracted outside the core. This perturbation also 
has a negligible effect on the parameters of importance. 

The effect of the term — 2c//V0
4 can be calculated 

using Eq. (5.15) and the relation3 

ro r d2UL dULdUL-] 
/ ZUL(r)Jdr=\ UL . (7.5) 

Jo L drde dr de Jr=r0 

The resulting change in 77 for the cesium 6p and 7p 
states are 0.0183 and 0.1099, respectively. This leads 
to an extrapolation equation correction 

5r?c(e) = 0.0209-0.0142e. (7.6) 

For a core radius of 4.961 the original polarization 
correction is 

577(e) = 0.0138+0.095e. (7.7) 

At solid-state energies the two corrections tend to add. 
This additional correction makes the polarization cor
rected values even worse. 

In view of this it is justifiable to ask what would 
happen if the analysis of shielding in the solid is com
pletely wrong. The extreme case would occur if the 
polarization interaction were completely unscreened. 
The conduction electron would interact with all the 
cores in the solid. Some idea of the order of magnitude 
of the changes can be obtained by calculating the effect 
on 0i, and A0i, due to a completely unscreened inter
action with the central core. For cesium, rs = 5.4, the 
largest parameter change is of the order of 2 % of the 
parameter itself. I t seems likely that the contribution 
from other cells can be neglected. 

We are then led to a striking paradox. The total 
polarization interaction leads to small changes in the 
free-atom eigenenergies. The corresponding change in 
77, at the atomic eigenenergies, is very small. When the 
most extreme polarization interaction in the solid is 
used it changes the solid-state parameters by only a few 
percent. Yet the Brooks-Ham correction can change 
0i by 20% and can double A0X. These results suggest 
that the 77 and/or polarization drj extrapolations are 
in error. 

C. The Polarization Correction Extrapolation 

I t will now be shown that there is good reason to 
believe that the ST? extrapolations are incorrect, but it 
will also be shown that this error is insufficient to 
account for the poor results obtained. 

A cubic 77 extrapolation formula which has not been 
corrected for polarization is determined by the condi
tion that it yields the observed 77's of three atomic con
duction electron states and one core state. The Brooks-
Ham linear polarization correction formula describes 
the correction to the conduction electron states quite 
accurately. The probability of finding the core electrons 
outside the core is negligible. Thus, we can approximate 
the core state corrections by zero. The same is true of 
any state with energy close to the core energies. Thus, 
it is expected that the polarization correction, and its 
derivative with respect to energy, will vanish at core 
energies. Examination of the extrapolation formula 
shows that drj and ddri/de are relatively large at these 
energies, indicating that the extrapolation formula is 
in error. This difficulty can be overcome by requiring 
that the extrapolation formula give the correct values 
for the two lowest valence electron states and have the 
desired properties at the core state energy. Such a 
formula, for cesium, is 

5r7P=0.0113+0.1381e--0.1707e2+0.0504e3. (7.8) 

The formula for drjc must also give correct results at 
core energies. In this case, since the electron is almost 
entirely within the core, 5e==2c//ro4. However, at core 
energies, the changes of a calculated value of 77 with a 
change in e is small. The resulting 8rjc is negligible so 
that we demand that 8rjc vanish at the core energy. The 
resulting extrapolation formula is 

8Vc=0.0209- 0.0146e+0.0014e2. 

At eo=0.54, corresponding to cesium, rs = 5A, the 
(B-H) polarization correction is 0.0651, 5rjp=0.0440, 
drjc=0.0134, and 5 ^ + ^ = 0 . 0 5 7 4 . Thus, there is a 
reduction in §77, but only by about 12%. This change is 
not even sufficient, taken alone, to reduce the A0i of 
the polarization correction value to a point where the 
calculated g shift is negative. 

Thus we find that although the situation is improved 
by a more careful extrapolation of 677, most of the im
provement is canceled by the additional correction. 

D . The q Extrapolation 

There is still another possible cause of the difficulty 
encountered with the polarization correction. I t may 
be that the extrapolation of the 77 functions, in the 
absence of the polarization corrections, are in error. 
If this is the case, the additional error contributions to 
the 77's must be of the same sign as the polarization 
corrections. 

This sort of error would consistently explain a large 
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number of QDM calculations. There is one calculation 
which tends to decrease our belief in its significance. 
Ham45 has calculated E(k) relations for the alkali metals 
using the QDM, but expanding in the region of the 
Fermi surface. Here the determination of the rfs in
volves an interpolation, rather than extrapolation, from 
free-atom energies. Brooks46 has compared the parame
ters eo and E2 of the NH-P calculation with the equiva
lent parameters obtained by extrapolating Ham's E(k) 
results to the bottom of the band. In all cases, the 
agreement is good. 

I t is highly likely that the parameters obtained by 
extrapolating rj are much more sensitive to extrapolation 
errors than are the extrapolations of the energy pa
rameters themselves. Thus, the agreement between 
the two methods indicates that it is not too probable 
that the rj extrapolation is the cause of the errors. 

VIII. CONCLUSIONS 

The results obtained in this paper may be summa
rized as follows: 

(1) Using wave functions which involve the third-
order k«p expansion of their periodic part, which in
clude a Hartree term in the potential, and which 
ignore the polarization corrections to the observed 
quantum defects, it is possible to calculate g shifts 
which agree with experimental values for sodium. 

(2) In the expansion of a physical quantity to a 
given power of k, it is necessary to retain all orders of 
k»p in w»(k,r) which contribute to that power. That is, 
beyond the first order the convergence of the k»p ex
pansion is slow. 

(3) For those alkali metals in which m^/m deviates 
from unity, neglect of the Hartree term leads to con
siderable error in the calculated g shift. 

(4) None of the values calculated for potassium and 
cesium are in good agreement with experiment. 

(5) The polarization correction invariably removes 
the agreement with experiment. Although the polariza
tion correction has been studied in detail and improve
ments made, no source of error in them has been found 
sufficient to explain the discrepancy. 

The failure of these calculations for the heavier 
alkali metals remains unexplained and disturbing. There 
are a number of possible explanations. 

The first is that the choice of a local potential in the 
derivation of Yaf et has led to the neglect of important 
terms in the g shift. I t is known, from the work of 
Kane,47 that the inclusion of a nonlocal potential leads 
to additional terms in the k»p expression for the effec
tive mass. While it seems clear that the expression for 
E 2 used here takes account of them, there is no indica
tion that the g-shift expression also does. 

The second possibility is that the g-shift expression 
45 F. S. Ham, Phys. Rev. 128, 82 (1962). 
46 H. Brooks, Trans. Met. Soc. AIME, 227, 546 (1963). 
47 E. O. Kane, Phys. Chem. Solids 8, 38 (1959). 

does not converge sufficiently rapidly to allow the 
neglect of higher order terms. I t has been shown that 
the wave function outside the core converges in the 
following manner. The ratio of the first- to zero-order 
term is small because the pseudopotential is weak. The 
convergence rate beyond first order is fairly rapid, 
because the pseudopotential is localized. Spin-orbit 
interaction, however, depends on the properties of the 
wave function in the region near the nucleus. The wave 
function in this region is determined by the properties 
of the true potential. This potential is not nearly as 
localized as the pseudopotential. Thus, if the potential 
was sufficiently weak so that it could be treated by 
nearly free electron theory, the core function expansion 
would be expected to converge at a much slower rate 
than the function outside the core. This implies that the 
higher-order terms of the g shift may be significant. The 
disturbing aspect of this analysis is that by analyzing 
their effects at the Wigner-Seitz sphere radius, we 
would probably meet small wave function differences 
magnified by large coefficients. Such an analysis points 
to the need for a calculation of the g shift directly at the 
Fermi surface. 

Another factor which has been neglected is the true 
shape of the Wigner-Seitz polyhedron and, correspond
ingly, the Fermi surface. No efforts to evaluate the 
accuracy of the spherical approximation have been 
made. However, the now-recognized small distortion 
of the Fermi surfaces from spherical shape suggests 
that this effect could not account for the errors. 

We note that the Hartree terms tend to bring the 
values of £ 2 closer to unity. The parameter (Z22—1) is 
reduced by ten to thirty percent for the heavier alkali 
metals. Since (E2— 1) can be related48 to the distortion 
of the Fermi surface, it is highly likely that it is the 
neglect of the Hartree term which led to the disagree
ment between Ham's49 calculation and recent experi
mental values.50 
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APPENDIX 1. A GENERALIZATION 
OF BOWERS' THEOREM 

In the course of the analysis described in Sees. I l l 
and IV, it was necessary to integrate quadratic func-

48 M. H. Cohen and V. Heine, Advan. Phys. 7, 395 (1958). 
49 F. S. Ham, Phys. Rev. 128, 2524 (1962). 
50 K. Okumura and I. M. Templeton, Phil. Mag. 7, 1239 (1962): 

8, 889 (1963). 
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tions of the radial solutions. In this Appendix the 
generalization of Bowers51 theorem, 

/ Fj,L*(rydr=Fj,L(rp) 
Jo drde 

A. B I E N E N S T O C K A N D H . B R O O K S 

rPy we obtain the result 

J 0 

FjJ(rydr 

dFj,L(rp) dFj,L(rp) 
= Fj,L(rP) 

d2Fj,L(rp) dFj,L(rp) dFj,L(rp) 

drde 

dr 
, (Al. l) 

appropriate to nonlocal potentials is derived. The 
derivation is presented because one important approxi
mation is made within it which limits the general 
applicability of this theorem. 

For each e there exists a set of solutions of the 
Schrodinger Eq. (3.1) which can be labeled as 

^j,L,mAr) = Fj,L(r)^JlL,mj(f). (A1.2) 

The <£'s are two-component spinors whose arguments 
are the orientation angles of the vector f. They are 
normalized on the unit sphere with spin summation 
included. 

Similarly, since V and W of Eq. (3.1) must be in
variant under the transformation r and r' going into 
Sr and Sr', respectively, where S is a member of the 
rotation group, they can be written in the general form 

+/.7> 
dr de 

dFj,L(r') 
L(r)VL(r/) 

-Fj,L{r')VL*(r/) 
dFj,L(r)-

de . 

de 

r'2dr'r2dr 

+ ( « 2 / 4 ) [ / ( / + l ) - J L ( £ + l ) - 3 / 4 ] 

X / \Fj,L{r)W{r,r') 

r" r r dFj,L(r') 

de 

-Fj,L{r')WL*(r/) 
dFj,L(r)-

de J 
r'Hr'rHr. (A1.6) 

V(T,T') = Y,LVL{r/)PL(*-f). (A1.3) 

Differentiating Eq. (3.1) by e, and multiplying on the 
left be \j/*, we obtain 

<¥(r) f W ) 
^*( r ){ -V 2 +e} **(r) / F(r,r ') dr' 

de J de 

- I « ¥ * ( r ) / T^(r,r')L'-S' dr' 
J de 

= - * * ( r ) * ( r ) . . (A1.4) 

Similarly, multiplying the Schrodinger equation for 
yp* by d\//(r)/de, on the right we obtain 

{( -V 2 +e)^*(r )} / ^(/)V*(T9r
,)dtf 

de J de 

f # ( r ) 
-W / ^ (OCL ' -SOW^Cr / ) ^ = 0. (A1.5) 

J de 

Subtracting the first equation from the second, using 
the forms of Eq. (A1.2) for ^(r) and (A1.3) for V and 
W, and integrating the result over a sphere of radius 

The two integrals make this expression particularly 
inconvenient to use. In the QDM, as used here, the 
potentials Vh(r/) and Whir/) are assumed to be local 
for r greater than some radius rp which is greater than 
the core radius and less than the Wigner-Seitz sphere 
radius. The condition that the Hamiltonian be Hermi-
tian leads to the requirement 

and 
VL(r/)=~-VL*(r',r) 

WL{r/) = WL*{r\r). (A1.7) 

This requirement implies that VL^/) and WL(V/) 
are local for rf>rp. Thus, the integrals can be written as 

Tp /»rji r 

Fj,L(r)VL(r/) 

~Fj,L{r')VL*(r/) 

dFj,L(r') 

de 

dFJiL(r)-

+ 

de J 

Fj,L(r)VL(r)8(r-r') 

r'2drfr2dr 

dFJtL{rf) 

de 

~FJ>L(r')VL*(r)8(r-rf) 
dFJfL(r) 

•1/Wi Mr. (A1.8) 

61W. A. Bowers, Ph.D. thesis Cornell University, Ithaca, New 
York, 1943 (unpublished). 

The first integral vanishes because of Eq. (A1.7). 
The second integral vanishes because the ranges of r 
and / do not overlap. Any ambiguity about the method 
of treating the integral at rp is eliminated by Eq. (A 1.7). 
The terms of Eq. (A1.6) involving W are treated in the 
same manner. With the vanishing of the two integrals 
Eq. (A1.6) reduces to the desired expression, Eq. (Al . l ) . 


